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Motion of a spherical particle in a rarefied gas. 
Part 1. A liquid particle in its saturated vapour 

By S. A. BERESNEV, V. G. CHERNYAK AND P. E. SUETIN 
Urals State University, Sverdlovsk, 620083, USSR 

(Received 14 March 1983 and in revised form 3 January 1986) 

The results of a theoretical investigation of the low-speed motion of a, volatile 
spherical particle in its saturated vapour at arbitrary values of the Knudsen number, 
evaporation coefficient and tangential momentum accommodation coefficient are 
presented. The problem is solved on the basis of the Bhatnagar, Gross & Krook (1954) 
linearized kinetic equation with the model collision integral. The variational method 
developed for the solution of the axisymmetric problems (Cercignani & Pagani 1968) 
is employed to calculate the drag. Phase changes on the particle surface have been 
shown to reduce the drag by an order depending on the Knudsen number. Incomplete 
accommodation of molecules colliding with the particle also results in the reduction 
of the drag over the whole range of Knudsen numbers. 

1. Introduction 
A single aerosol particle suspended in a non-equilibrium gas can be affected by 

different forces due to non-uniformity. They are the isothermal drag, thermal force, 
photophoretic force, diffusion force and other kinds of forces caused by the combined 
flows of heat, mass and momentum (Hidy & Brock 1970; Fuchs 1971 ; Brock 1980). 

The purpose of the present paper is to investigate the simplest of the above 
mentioned phenomena - the isothermal drag. This phenomenon is a subject of 
considerable interest for general investigations in mechanics of aerosols (Hidy k 
Brock 1970). The study of the drag and sedimentation velocity is basic for the analysis 
of processes of coagulation (e.g. in clouds), for the study of the drift of aerosol particles 
in air flow and their sedimentation velocity, etc. 

Optimization of various technological processes (e.g. cleaning of industrial gases, 
heterogeneous catalysis, motion of drops and dust particles near turbine blades) also 
requires the detailed analysis of particle motion. 

The expression for the isothermal drag of a solid spherical particle moving in a gas 
at  arbitrary degrees of its rarefaction was first obtained by Millikan (1911) after 
analysing a considerable amount of experimental data for different substancqas 
pairs. Among heuristic approximate theories giving a satisfactory description of the 
particle drag over a wide range of Knudsen numbers (Kn) are the works by Fuchs 
& Stechkina (1963); Sherman (1963) and Annis & Malinauskas (1972). Fuchs & 
Stechkina suggested a method of calculating the drag on the basis of ‘lacing’ the 
free-molecular and viscous slip-flow solutions near the particle surface (the so called 
boundary-sphere method). The maximum discrepancy between the results obtained 
by this method and Millikan’s (1923) formula amounts to 5 yo at Kn = 3. The method 
suggested by Sherman (1963) is similar to the one (the boundary-sphere method) 
just described. The expression for the drag is also obtained on the basis of the free- 
molecular and viscous limits. The departure from Millikan’s formula amounts to 
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10 yo at intermediate values of Kn. Annis & Malinauskas (1972) determined the drag 
using the method of ‘giant molecules’. Though the authors stress that the results 
obtained are in a good agreement with those of Millikan (1923) (the discrepancy does 
not exceed 2%) the method is not free from certain physical contradictions and 
includes a great number of adjustable parameters. Waldmann & Vestner (1977) used 
the method of non-equilibrium thermodynamics and obtained an expression that 
gives a satisfactory description of the viscous slip-flow and intermediate flow- 
past regimes. 

A strict approach to this problem should be based on solving the kinetic equation 
with corresponding boundary conditions. The work of Cercignani, Pagani & Bassanini 
(1968) presents results obtained for the drag at arbitrary Kn. The problem was solved 
by a variational method on the basis of the model kinetic equation of Bhatnagar, 
Gross & Krook (1954). Molecules were assumed to be reflected from the particle 
surface diffusively, the temperature of the particle and the surrounding gas being the 
same. Calculations showed a good agreement (the discrepancy is within 2%) with 
Millikan’s (1923) empirical formula. Asymptotic analytical expressions for the drag 
have been obtained in the free-molecular and viscous slip-flow regimes. Lea & 
Loyalka (1982) solved the set of integral equations for macroparameters obtained by 
Cercignani et al. (1968) numerically and then calculated the drag and velocity profile 
near the particle. Their results are in good agreement with Millikan’s (1923) data. 
An analytical expression for the drag at arbitrary Kn was obtained by Phillips 
(1975). The problem was solved by the moments method for the specular-diffuse 
scheme of boundary conditions. The solution provides correct results for the viscous 
and free-molecular limits for the case of perfect accommodation on the surface and 
gives a satisfactory description (within 10 % accuracy) of the intermediate flow-past 
regime. In  the work of Khlopkov (1975) the drag was calculated on the basis of solving 
the linearized Boltzmann equation by the Monte-Carlo method. Two schemes of 
boundary conditions were considered : fully specular and fully diffuse molecular 
scattering by the particle surface. In  the case of diffuse scattering calculations have 
shown a satisfactory agreement (within 6-10 %) with the results of Millikan (1923) 
for the transitional and free-molecular regimes. For the viscous slip-flow regime, 
the discrepancy amounts to 30%, which must be due to the peculiarities of the 
numerical method used by the author. 

Phase changes on the particle surface and their effect on the drag were analysed 
only for limiting Knudsen-number-regimes in the works by Onishi (1977), Sone & Aoki 
(1979) and Brock (1964). Sone & Aoki (1979) and Onishi (1977) solved the problem 
of volatile-spherical-particle motion in its own saturated vapour at small Kn on the 
basis of the asymptotic method developed by the authors. All molecules incident on 
the particle surface were assumed to condense and then evaporate with an equilibrium 
distribution function. The ratio of heat conductivity coefficients of the vapour and 
liquid phases was assumed to be arbitrary by Sone & Aoki (1979) and to be zero by 
Onishi (1977). Volatile-particle motion in the free-molecular regime was investigated 
by Brock (1964). It was assumed that some molecules are specularly reflected, while 
others are absorbed (with a certain probability of subsequent condensation) on the 
particle surface. The expression obtained for the drag includes the dependence on the 
gm-surface interaction coefficients. 

Some methodologically significant aspects of the statement of the problem of 
volatile-particle motion at arbitrary Knudsen numbers were discussed in Brock’s 
(1967) paper. Its estimations, however, cannot substitute for the results of a thorough 
investigation of the problem. 

The purpose of this work is to solve the problem of volatile-particle motion in its 
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own saturated vapour at arbitrary values of Kn, the evaporation coefficient and the 
tangential momentum accommodation coefficient. 

2. Formulation of the problem 
Consider a stationary flow past a particle of radius R, in its own saturated vapour. 

Phase changes on the particle surface are responsible for a number of physical 
phenomena which require careful analysis. The processes of condensation on the front 
of the particle and evaporation on its rear produce a temperature gradient along the 
motion direction. This effect is enhanced owing to the thermal polarization of the 
particle surface (Deryaguin & Bakanov 1962) caused by the isothermal heat flow in 
the moving gas. In  its turn, a non-uniformly heated particle is affected by the 
radiometric force contributing to the drag. 

This paper concerns the case reflecting the majority of real situations. The particle 
heating due to viscous friction in the retarding flow was not taken into consideration 
since it is proportional to the square of the Mach number, while only terms linear 
in the Mach number were taken into account in the theory. The thermal conductivity 
of the particle A, waa assumed to considerably exceed that of the vapour Ag, i.e. 
Ag/Ap+O. In  this case the temperature gradient produced inside the particle and 
thermal polarization of its surface may be ignored, and the particle temperature may 
be considered constant and equal to the vapour temperature T (Onishi 1977). 

The temperature gradient inside the particle and its effect on the drag of a volatile 
particle in a slip-flow regime was taken into account by Sone & Aoki (1979). Their 
results show that in this case ( K n 4  1) correction for the drag even for low- 
conductivity particles &/A, % 1) is in proportion to Kn2. For low-conductivity 
particles the drag increase due to the thermal polarization of the particle surface 
amounts to no more than several per cent. For high-conductivity particles this effect 
is negligible. This waa theoretically investigated for the free-molecular regime by 
Beresnev & Chernyak (1983). Experimental data for the slip-flow regime were 
obtained by Bakanov & Vysotskiy (1982). 

The particle was assumed to retain its spherical shape, which means that a possible 
deformation of the particle shape due to evaporation-condensation processes is 
cancelled out by the surface-tension force tending to impart a spherical shape to the 
particle. This assumption is valid for ' slow ' evaporation-condensation processes. 

The particle surface-curvature effect causing a difference between saturated vapour 
pressures above a curved surface and a plane one was not taken into account in this 
work. This enabled the authors to consider the particle radius to be constant, its lower 
limit for most substances being R, = lo-" m. No substance circulation due to 
convection was aasumed to occur within the particle. 

Let the undisturbed values of the number density and the vapour velocity be n, 
and U, respectively. Let x be a radius vector from the centre of the particle and 
u the molecular velocity vector (figure 1). 

If the flow velocity is small, h. 

then the distribution function f ( x ,  u )  describing the vapour condition can be 
linearized : 

f(x, U) = f , [ l + 2 ~ . ~ , + h ] ,  (1) 

where 
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Z 

FIGURE 1. Geometry of the problem. 

and h is the distribution-function disturbance near the particle. Representation of 
the distribution function in (1) implies that only linear members of the Mach number 
were taken into account in the theory. 

The linearized kinetic equation with the collision integral in the BGK form 
(Bhatnagar et al. 1954) is the following: 

1 1  
256. W+-  V - -  h, 

ah 56.- = a? c c  

a = -  C ?=id-, X 

C )  1 
where 

and n-nm = n-t h exp (-8) dc, s v=- 
n m  

W =  u--urn =n- i  hcexp(-cce)dc, s (3) 

are the disturbances of the dimensionless number density and macroscopic velocity; 
I is the mean free path of the vapour molecules defined by the viscosity-coefficient 
expression 

r ] ,  = *n (sr I .  

To solve (2) boundary conditions that disturbance h must satisfy should be set. 
Here we must take into account the discontinuity in the molecular velocity space 
character of the velocity distribution function (Kogan 1969) : 

where n is the normal unit vector and!+ andf- are the distribution functions of the 
emitted and incident vapour molecules respectively. 
In the boundary condition for the distribution function f+ a part a, of the 
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molecules was assumed to evaporate evenly from the surface with a velocity 
distribution according to Maxwellian law f,, and the (1 -am) part, experiencing no 
condensation in colliding with the particle, was supposed to be reflected. In  this case 
the emitted molecules' distribution function f + can be written in the following form 
according to Brock (1964):  

when Irl = R, (n-a) > 0. 
Here R = ?$Ro/l = id Kn-l is the dimensionless radius of the sphere related to 

the Knudsen number Kn = Z/Ro. 
We admit the possibility of the arbitrary accommodation of tangential momentum 

at the collision of the reflected non-condensed molecules with the particle. This 
possibility could be taken into account by writing the distribution function of the 
reflected molecules f' in the form 

f+ = a m  fa + (1  -am)f", ( 4 4  

f'(R) =f,[l +A+Bc,],  Irl = R, (n.6)) > 0, (4b) 

according to Cercignani & Pagani (1969), where ce is the &component of the 
dimensionless molecular velocity c. 

The form of the boundary conditions for the disturbance h is derived from ( l ) ,  (4a)  
and (4b): 

h(r, c )  -to when ~ r ~ + c o ,  

h(r,c) = (1-%)[A+Bce]-2c*u, when Irl = R, @*a) > 0. (5 )  

The unknown quantities A and B depending on the polar angle 8, (figure 1) are 
derived from the laws of conservation of mass and tangential momentum on the 
particle surface. 

The law of conservation of mass is expressed here in the following form: 

IN+I = amlNsl+ (1  -am)  IN-1, 

where lN+l =I (n*u)f+du 

is the full number flow of emitted molecules; 
(n-D)>o 

c 

is the number flow of incident molecules experiencing no condensation in colliding 
with the particle; and r 

is the number flow of evenly evaporated molecules. 
Equation (6) waa derived by multiplying (4) by (n*u) and integration in the 

half-space ( n . 9 )  > 0. It must be taken into account that all the non-condensed 
molecules are supposed to be reflected, that is 

(1-am) IN-I = (1-am) l"l' 

where 

The tangential momentum conservation law for the molecules reflected from the 
particle surface is expressed in the following form: 

Ice1 = ( 1 - a m )  ( 1 - a J  I P e I ,  (7) 
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where 

is the radial flow of the tangential momentum of the reflected molecules; 
r 

is the radial flow of the tangential momentum of incident molecules; a7 is the 
tangential momentum accommodation coefficient ; a, is the evaporation- 
condensation coefficient. The normal momentum accommodation coefficient a,, waa 
assumed to be equal to 1. 

3. Basic equations 
The kinetic equation (2), taking into account the boundary conditions (5 )  was 

formally integrated along the characteristics (Marchuk 1961) and according to (3) waa 
transformed into a set of integral equations for the number density and macroscopic 

where 

The integration is carried out over the volume V the points of which can be reached 
from the point r by straight lines without intersecting the sphere; the argument of 
the integrals J, is (r - 1'1 ; the expressions for vo and Wo have the following form : 

where 8, = r -  ro/lr- rol ; ro is the value of the radius vector on the sphere surface; 
wo is the solid angle under which the sphere is seen from the point r; the argument 
of the J ,  is [r-rol; n, r are the normal and tangential to the sphere surface unit 
vectors. The set of integral equations (8) was completed by two integral relations 
obtained from (6) and (7): 

where the integration on the left-hand side of the equations is performed over the 
whole sphere surface; 8, is the polar angle of the problem (figure 1); Vo is the whole 
volume around the sphere. 

For the purpose of subsequent analysis it is convenient to write the set of integral 
equations (8) in the symmetrized matrix form 

!P= uY+S, (11) 
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where 

According to Hidy & Brock (1970), the force acting on the particle at rest is 

are the normal and tangential stresses at the sphere surface respectively; 
V = (u- U,) is the thermal velocity of the molecules; nz is the unit vector along the 
axis 0% chosen along the direction U,. 

Description of the force in the form (12) fully coincides with the definition accepted 
in fluid mechanics (Batchelor 1967). 

Using the expression (12), the distribution-function form (l), the boundary 
condition (5 )  and the integral form of the kinetic equation (2), we obtain the following 
expression for the dimensionless (P = F/(4PPm/x)) drag: 

F* = YdRau, -t( 1 - LZ,,,) A cos 8, - sin 8, ds 
;;f " I  

- 2 ~ - f  Ivo dr  Jwo da,[vJ3-2(5),. W) J4] ( Q o * ~ m ) ,  (13) 
u, 

where ds = Ra sin 8, do, dg5, is the dimensionless sphere surface element. 

4. Variational method 
The set of integral equations (11) with additional conditions (10) was solved by 

the variational method developed for solving axisymmetric problems by Cercignani 
et al. (1968). 

The essence of the method consists in constructing the bilinear functional 

J ( A , 8 ,  = (€p, p-&-2s)+J &A2+2/32A+/3382+2/3484]d8, (14) 
S 

where 

and the constants /3t are defined from the extremum condition of the functional J 
with independent variation of the functions 2 and 8. 
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The functional form (14) differs from the corresponding functional form in the work 
by Cercignani et al. (1968) because the conditions of phase changes and arbitrary 
accommodation of the tangential momentum on the particle surface are additionally 
taken into account. 

It can be shown (Cercignani et al. 1968) that the stationary value of the functional 
(14) is directly connected with the reduced drag value 

D = (8+n)-l[8- 

where D = F(a7, a,)/F,,(a, = 1, a, = 0 ) ;  FFM is the free molecular drag value 
(equation (18)). 

The problems pertaining to the features of the functional of type (14) and the 
estimation of lower and higher limits of the drag D have been discussed in the works 
by Cole (1981, 1982). 

The trial functions A,& 9 in (14) were chosen so as to ensure the correct 
hydrodynamic limit of the solution (the same was done by Cercignani et al. 1968). 
Exact free-molecular values of the parameters to be determined are contained in the 
free members (9) of the integral equations (8). 

It waa shown that in the case of phase changes and incomplete accommodation 
of the momentum on the particle surface the trial functions can be chosen in the 
following form : 

4 case 
r 

P= u ,  - r - ~ 2 [ a 5 + a 2 ( 1 - ~ ) ]  cose , 

$ [ a 5 + a 2 ( 1 + ~ ) ]  sine 1 
A = a9ua coseo, B = a4ua sine,, 

where at are constants chosen in such a way that the functional (14) attains a 
stationary value. 

The angular dependence of trial functions (16) is exact (Cercignani et al. 1968). 
The choice of the dependence on r was based on the solution of a corresponding 
hydrodynamic problem obtained by the authors. 

In  this case the stationary value of the functional (14) may be written as 

5 5 

3JsUt = i-1 X [a,,a:-2aia,+2 k > i  X aikak] .  

In what follows the problem solution is reduced to calculation of the coefficients arj, a,, 
which is a labour-consuming problem involving multiple integration of composite 
subintegral functions.? 

5. Discussion of results 

analytical expressions were obtained for the drag. 
In  limiting caBc s of free-molecular (Kn % 1)  and viscous slip-flow (Kn 4 1)  regimes 

t As the algebraic expressions for the aj j  and at coefficients are rather cumbersome, they are 
not included in the present paper. Copies of these expressions together with the asymptotic values 
of a,j, at at R & 1 may be obtained by writing to the Editor of J.F.M. or to the authors. 
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In  the free-molecular limit 

Under correspo ding assumptions (perfect tangential momentum accommodation 

result of Brock (1964). For a non-volatile particle (a, = 0) at perfect accommodation 
(a, = 1) the well-known result (Epstein 1924) follows from (18). Note that (18) can 
be used at Kn 2 10, the error being within 5%. 

The expression for the drag in a viscous slip-flow regime has been obtained by 
asymptotic expansion of the coefficients from (17) and (15): 

(19) 

and equality of the ‘t particle and vapour temperatures) this result coincides with the 

F, = 6 q r  U, R,[1 -a  Kn], 

where a is a numerical coefficient dependent on cc, and a, in a complex manner. The 
formula (19) is valid with an accuracy of within 5 % at Kn 5 0.2. 

For a non-volatile particle (a, = 0) at a, = 1, a = 1.1366 which coincides with the 
result of Cercignani et al. (1968). For a volatile particle at a, = 1, a = 1.4167 which is 
in a good agreement (the discrepancy is within 0.4 %) with the results of Onishi (1977) 
and Sone & Aoki (1979) for the cme when the heat conductivity of the particle 
considerably exceeds that of the vapour, and with the result of Kucherov & Rikenglaz 
(1960) (the discrepancy is within 2.7 %). 

The dependence of a on the coefficients a, and a, is shown in table 1. 
In  what follows the brief outline of the physical mechanism of the effect of the phase 

changes on the drag is given. As shown by (12) the drag is determined by the normal 
and tangential stresses. The existence of the phase changes affects these components 
in different ways. From the boundary condition (4) it  follows that the evenly 
evaporated molecules contribute to 6, but do not affect the Qre. Then, with the 
increase of a,, the contribution to the force from Qr,j decreases, owing to the increase 
of the evaporated molecules’ share. Normal stresses Q,, are less affected by the phase 
changes as the evaporated and the reflected molecules contribution to the normal 
momentum flow is approximately the same. Phase changes, therefore, reduce the drag 
owing to the decrease of the tangential stresses Q,8. The minimum value of the drag 
is at a, = 1. At fixed value of a, it is possible to analyse the dependence of the 
drag on the tangential momentum accommodation coefficient. It could be shown that 
a, changes affect only era, but do not affect c,,. With the reduction of a, the 
contribution to the force decreases, producing a drag reduction thereby. I n  this case 
the maximum value of the drag is at a, = 1. These qualitative inferences are valid 
for the whole range of Knudsen numbers. 

Numerical calculations were carried out at intermediate Kn and various values of 
a, and a,. To calculate multiple integrals in a$,, a, the Korobov (1963) method was 
used. The results for Kn x 0.09 and 8.86 are presented in table 2, and those for 
Kn k: 0.22,O.M and 0.89 are available from the editor or the authors on request. 

It should be noted that calculation of at, and a, with the required accuracy proved 
to be a labour-consuming procedure and required cumbersome transformations for 
‘improving ’ the subintegral function form. The calculation accuracy of triple 
integrals determines the accuracy of calculating coefficients a,,, a, and, finally, the 
drag calculation accuracy wm not below 0.4%. The calculation results and 
comparison with other theories are shown in figures 2 and 3. 

The calculation results have shown a good agreement (the discrepancy does not 
exceed 2%) with those obtained by Cercignani et al. for a non-volatile particle at 
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FIGURE 2. Drag D as a function of the Knudsen number, Curve 1, Phillips’ (1975) result for the 
case of diffuse scattering of molecules; 2, Millikan’s (1911) emperical formula; 3, the result of 
Cercignani et al. (1968); 4, Sherman’s (1963) result; 5, Khlopkov’s (1975) result for the case of diffuse 
scattering of molecules; 6, the result of this work at a,,, = 0, a, = 0; 7, the result of this work at 
a, = I .  Millikan’s (1911, 1923) experimental data: 0,  watch-oil drops in air; a, shellac particles 
in air; 0, mercury drops in air. 
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FIGURE 3. Drag at small Knudsen numbers. Non-volatile particles (a,,, = 0 ) :  curve 1, asymptotic 
expression for the drag (equation (19)) at a, = 1 ; 2, calculation results at a, = 1 ; 3, the result of 
Sone & Aoki (1977) with the first-order members for Kn taken into account; 4, the result of Sone 
& Aoki with the second-order members for Kn taken into account; 5, asymptotic expression from 
this work (equation (19)) at a, = 0 ;  6, calculation results at a, = 0. Volatile particles (a,,, = 1): 
curve 7, asymptotic expression (equation (19)) ; 8, the result of Onishi (1977) and of Sone & Aoki 
(1979); 9, calculation results. Millikan’s (1911, 1923) experimental data: 0,  oil drops in air; (>, 
Shellac particles in air; 0, mercury drops in air. 
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Substance of the particle and 
the surrounding gas a a7 

I air 1.23 0.95 

Watch oil (Millikan 1923) { L: 
Vacuum oil M300 
Vacuum oil PH300 
Vacuum oil PN200 
Paraffin (Schmitt 1959) 
Amorphous particles NaC1-Ar 

(Jacobsen & Brook 1966) 
Tricresylphosphate (TCP)-air 

(Rosenblatt & La. Mer 1946) 

He 

1- 
1.18 
1.16 
1.29 
1.49 
1.42 
1.46 
1.28 
1.20 

1.23 

0.98 
0.99 
0.93 
0.85 
0.88 
0.86 
0.93 
0.97 

0.96 

TABLE 3. Coefficient values a and a,, derived from experimental data 

a, = 1. The drag curve constructed by the authors runs between the curves for D 
constructed by Millikan (1911) and by Cercignani ei al. (1968) over the whole range 
of Kn (it is not shown in figure 2). It is obvious that the results obtained by Phillips 
(1975) at complete accommodation are systematically overestimated while those 
obtained by Sherman (1963) are underestimated compared with the results of this 
paper over the whole range of Kn. Khlopkov’s (1975) result underestimates the 
D-values to a great extent (by 30 yo) in the viscous slip-flow and transitional regimes. 

A good agreement between the results obtained by different methods at small Kn 
is shown in figure 3. At Kn ;L 0.2 the linear dependence of the drag on Kn ceaaes and 
correction for higher orders should be taken into account. 

The analysis has shown that phase changes on the particle surface decrease the 
drag by values depending on K n  (figure 4). If at Kn = 0.1 the difference between 
the drag values at a, = 0 and a, = 1 (at a, = 1) does.not exceed 3% then in the 
transition regime this difference grows and in the free-molecular regime is x 30 %. 
Thus even in the case of motion in the saturated vapour it is permissible to speak 
about a considerable effect of volatility on the drag. 

Unfortunately the authors are not aware of any experimental results for the 
measurements of the drag (or velocity) of an aerosol particle in its own saturated 
vapour. Such experimental data would be of a considerable interest both for 
theoretical investigations and for practical application. 

In  complete accommodation of the tangential momentum of the molecules colliding 
with the particle also leads to a drag decrease (figure 5) .  In the viscous slip-flow regime 
the calculation for a non-volatile (a, = 0) particle has confirmed the validity of the 
well-known result (Basset 1888) that at Kn -4 1 and a,+O the drag is 

(20) 

which is 1.5 times less than the drag at complete accommodation of the tangential 
momentum. Note that the moments solution of Phillips (1975) does not predict this 
kind of behaviour of the drag at a,+O. 

At intermediate Kn the effect of a, decreases (figure 5) and at Kn+ 00 the difference 
in the drag at a, = 1 and a, = 0 (at a, = 0) is about 20 %. Thus in the whole range 
of Kn there exists a pronounced dependence of the drag on the degree of 
accommodation of the tangential momentum of the molecules colliding with the 

4 = 4 q g  urn R,, 
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particle. This fact can be used for determination of the accommodation coefficients 
when comparing theory with experiment. The values a and aT for different gas- 
substance pairs obtained after analysing the most reliable experimental data are 
given in table 3. The particle substances under experimental conditions were assumed 
to be low-volatile (which is confirmed in the works mentioned). The values of a and 
aT were taken from the experimental data at Kn 5 0.1. 

It is well known that in the viscous slip-flow regime the isothermal slip coefficient 
(coinciding with coefficient a)  depends only on aT and does not depend on a,. 
Therefore, all the discrepancies between the experimental data and theoretical 
predictions at perfect accommodation should be accounted or by the incomplete 
accommodation of the tangential momentum. 
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